由于我们不能利用爱因斯坦的广义相对论来描述创生,如果我们要描述宇宙的起源,广义相对论就必须被一个更完备的理论取代。人们期望,即便广义相对论不崩溃,也需要更完备的理论,因为广义相对理论没有考虑由量子论制约的物质的小尺度结构。我们在第四章提到,因为量子论适用于描述微观尺度的自然,在宇宙大尺度结构的研究中对于多数实际的目的,量子论不大相干。然而,如果你在时间中回溯至足够远,宇宙就和普朗克尺度一样小,即十亿亿亿亿分之一厘米,这是必须考虑量子论的尺度。这样,虽然我们还未拥有一个完备的量子引力论,我们的确知道,宇宙的起源是一个量子事件。因而,正如我们——至少临时地——把量子论和广义相对论相结合以导出暴胀理论,如果我们要回溯得甚至更远并理解宇宙的起源,就必须将我们关于广义相对论所知的与量子论结合。
为了要知道这如何进行,我们需要理解引力翘曲空间和时间的原理。空间翘曲比时间翘曲较易想象。想象宇宙是一撞球台的平坦表面。这台面是一平坦空间,至少在两维如此。如果你在台上滚球,它就沿直线运动,倘若台面有些地方被翘曲或者被弄成凹痕,正如下图所画,那么球就会走弯路。<!--PAGE 5-->
<!--PAGE 5-->
天文学家还发现了支持一个热的微小的早期宇宙的大爆炸图象的其它特征标志。例如,在第一分钟左右,宇宙会比典型恒星的中心还热。在那个时期,整个宇宙就像一个核聚变反应堆那样行为。当宇宙足够膨胀并冷却,该反应就停止了,然而理论预言这会遗留一个由氢为主要成分的宇宙,但还有大约百分之23左右的氦,以及微量的锂(所有的更重的元素是后来在恒星中形成的)。其计算和我们观察到氦,氢和锂的数量非常一致。
氦丰度以及CMBR的测量为极早期宇宙的大爆炸图象提供了令人信服的有利证据,然而尽管人们可将大爆炸图象认为是早期的一个成功的描述,严格地接受大爆炸,也就是说,认为爱因斯坦理论提供了宇宙起源的真正图象却是错误的。那是因为广义相对论预言在时间中存在一点,那时宇宙温度,密度,和曲率都是无限的,这是数学家称之为奇点的情形。对于物理学家而言,这表明在那点爱因斯坦理论崩溃了,因此不能用之预言宇宙为何启始,只能用之预言之后它如何演化。因而尽管我们可以使用广义相对论的方程和我们对天空的观测去获悉极年轻时代的宇宙,但将大爆炸图象一直延伸至启始却是不正确的。
我们将会很快回到宇宙创生问题,但首先要讲一下有关膨胀的最早期的相。物理学家称之为暴胀。除非你在津巴布韦住过,那里通货膨胀最近超过二百万倍,这个术语也许听起来不那么爆炸性。然而,甚至根据保守的估计,在这个宇宙暴胀期间,宇宙在0.00000000000000000000000000000000001秒膨胀了1,000,000,000,000,000,000,000,000,000,000倍。它仿佛是直径1厘米的硬币忽然爆炸到银河系宽度的一千万倍。这似乎违反了相对论,它要求没有任何东西可比光运动得更快,但那个速度极限不能适用于空间本身的膨胀。
这种暴胀的事件也许发生过的思想首先是在1980年代提出的,那是基于超出爱因斯坦广义相对论,并注意到量子论方面的考虑。由于我们没有完备的量子引力论,其细节还在研究之中,因此物理学家还不清楚暴胀确切地如何发生。然而根据理论,由暴胀引起的膨胀不会是完全均匀的,正如传统的大爆炸图象预言的那样。这些无规律性在不同方向的CMBR的温度上会产生微小的变化。这种变化太小了以至于在1960年代未被观测到,然而1992年被NASA的COBE卫星首先以及后来它的后继者2001年发射的WMAP卫星测量到。因而,我们现在确信暴胀的确真的发生过。
出乎意料的是,尽管CMBR中的微小变化是暴胀的证据,CMBR的温度几乎完美的均匀性却是暴胀是重要概念的一个原因。如果你使物体的一部分比它的周围更热,然后等待,这热点会变较冷,而周围变得较暖,直到与物体的温度一致。类似地,人们可以预料宇宙最终会具有一致的温度。但是这个过程花费时间,而如果暴胀没有发生过,假定这种热传输的速度受光速的限制,则在宇宙的历史中就不会有足够的时间让热在相隔很开的区域变均匀。一个非常快速(比光速快得多)的膨胀时期可以纠正这个问题,因为那就存在足够的时间在极其微小的前暴胀早期宇宙使均匀化发生。
暴胀至少在一个意义上解释了大爆炸中的爆炸,即暴胀至少在它所代表的膨胀比由广义相对论的传统大爆炸在暴胀发生的时间段里的膨胀远为极端。问题在于,为了我们的暴胀理论模型能有效运行,宇宙的初始状必须以一种非常特殊和高度不可信的方式被设定。这样,传统的暴胀理论解决了一族问题,却产生了另一个问题——需要一个非常特别的初始态,那个零时间的问题在我们即将描述的宇宙创生理论中被消除。