返回

大设计

首页
第8章 可择历史 (2)(1 / 2)
最新网址:m.feiwen5.com

每条单独对费恩曼求和(也因此对从A走到B的概率)贡献的路径的相,可被设想成具有固定长度但可以指向任何方向的箭头。把两个相位相加,你把代表一个相位的箭头放在代表另一个的箭头的末端,得到的新箭头表示为和。要加上更多相位,你就简单重复这个过程。请注意,当相位排列成行,代表总和的箭头可以非常长。但是如果它们指向不同方向,当你将它们相加时,它们多半抵消,给你余下的箭头没有多长。在下图中阐释了这个思想。

为了实行费恩曼手法来计算一个始于位置A终于位置B的粒子的概率幅度,你把连接A和B的每一路径相关的相位或箭头加起来。存在无限多的路径,这使得数学有些复杂,但可以进行。下图画出一些路径。

费恩曼理论给出一个特别清楚的图像,显示如何从量子物理产生一个牛顿世界的图象,尽管前者似乎非常不同。根据费恩曼理论,和每一路径相关的相位依赖于普朗克常数。理论指出,因为普朗克常数如此之小,当你把从相互靠近的路径来的贡献相加时,其相位通常强烈地变化,这样,正如上图所示,它们多半相加为零。但是理论还指出,存在某些路径,它们的相位具有排列成行的倾向,如此这些路径是有利的;也就是说,它们对于粒子的被观察行为做出较大贡献。结果是,对于大物体,非常类似于牛顿理论预言的路径一定具有相似的相位,而且迭加起来对求和给出比所有其它的远大得多的贡献。这样仅有的具有有效地大于零的概率的终点正是牛顿理论预言的那个,而该终点的概率非常接近于一。因此大物体正如牛顿预言的那样运动。

量子物理的概率不像牛顿物理或日常生活中的概率,意识到这一点很重要。我们从比较恒定地打到屏幕上的巴基球流累积的模式与运动员瞄准圆靶上靶心射击累积起的弹孔模式,可以对此有所理解。除非运动员喝了太多的啤酒,飞镖打击中心附近的机会最大,随着离开中心概率就减小下来。正如用巴基球一样。任何给定的飞镖可到达任何地方,而过一段时间就会出现反映潜伏概率的孔的模式。我们在日常生活中可将这情形表达为,一个飞镖具有打到不同点的某一概率;但是如果我们那么说,不像在巴基球的情形,那只是因为我们对其投射条件的知识不完整。如果我们精确地知道运动员投镖的方式,其角度,自旋,速度等等,我们就能更好地描述。那么,在原则上,我们就能够要多准确就有多准确地预言中镖之处。因此,在日常生活中,我们利用概率的说法来描述事件的结果,不是过程的内禀性质的,而只是我们对它的一定方面无知的反映。

量子理论中的概率是不同的。它们反映了自然中的基本随机性。自然量子模型包含有不仅与我们日常经验也和我们实在性的直觉概念矛盾的原理。发现那些原理奇异并难以置信的人有许多知音,诸如爱因斯坦和甚至费恩曼这样伟大的物理学家,我们很快就要介绍后者对量子论的描述。事实上,费恩曼有一次写道:“我以为我可以有把握地说,没人能理解量子力学。”但是量子物理和观测符合。它从未被检验失败过,它受到的检验比科学中的任何其它理论都多。

关于量子和牛顿世界之间的差别,里查德费恩曼在1940年代获得一个令人惊讶的洞察。费恩曼对干涉条纹如何在双缝实验中产生的问题极为好奇。回忆当我们在双缝都打开射出分子时,发现的条纹不是我们对做两次实验所发现的模式之和,一次只让一道缝隙打开,另一次只让另一道打开。相反地,当双缝都打开时,我们找到一系列亮暗条纹,后者是没有粒子打到的区域。那意味着,如果比如讲只有缝隙一打开时,粒子就会打到黑条纹的地方,而当缝隙二也打开时,就不打到那里去。看来仿佛是粒子在从源到屏幕的旅途中的某处得到了两道缝隙的信息。这类行为和在日常生活中事物看起来的行为方式彻底不同,在日常生活中一个球沿着穿过一道缝隙的途径而不被另一道缝隙的情形所左右。

根据牛顿物理——根据如果我不用分子而用足球时实验运行的方式——每个粒子遵循着一个从源到屏幕的明确定义的路径。在这个图像中就没有粒子在途中迂回访问每道缝隙邻近的余地。然而,根据量子模型,据说粒子在它处于始终两点之间的时刻没有明确的位置。费恩曼意识到,人们不必将其解释为此意味着这粒子在源和屏幕之间旅行时没有路径。它反而可能意味着粒子采用连接那两点的每一条可能的路径。费恩曼断言,这就是使量子物理有别于牛顿物理的缘由。因为粒子不仅遵循单独的明确的路径,它取每一条路径,并且同时取这些路径,因此在两个缝隙的情形是要紧的。这听起来象是科学幻想小说,但它不是。费恩曼构想出一个数学表述——费恩曼历史求和——这个表述反映了这一思想,并重现了量子物理的所有定律。数学和物理图象在费恩曼理论中和在量子物理的原先表述中不同,但预言相同。

费恩曼观念在双缝实验中意味着,粒子采取只通过一道缝隙或只通过另一道缝隙的路径;还有穿过第一道缝隙,又穿过第二道缝隙返回来,然后又穿过第一道的路径;访问卖咖喱大虾的饭馆,然后在回来之前,围绕木星转几圈的路径;甚至穿越宇宙再返回的路径。按照费因曼观点,这就解释了粒子如何得到关于哪道缝隙开放的信息——如果一道缝隙开放,粒子取穿越过它的路径。当两道缝隙都开放时,粒子穿越一道缝隙的路径会和穿越另一道缝隙的路径发生干涉,引起了干涉。这听起来古怪,但就今日大多数基础物理的目的——以及本书的目的——已经证明费恩曼表述比原先的表述更有用。

费恩曼有关量子实在性的观点对于理解我们即将表述的理论至为关键,因而值得花费一些时间去感知它如何运作。想象一个简单的过程,一个粒子在某一位置A开始自由运动。在牛顿模型中那个粒子将会沿一直线运动。某个精确的时刻之后,我们将会发现该粒子在沿着那直线的某一精确的位置B。在费恩曼模型中,一个量子粒子体验每一条连接A和B的路径,从每个路径获得一个称为相位的数。相位代表在一个波的循环中的位置,也就是该波在波峰或波谷,或者在它们之间某个精确位置。费恩曼计算那个相位的数学手法显示,当你把从所有的路径的波迭加在一起时,你得到粒子从A开始到达B的“概率幅度”。而概率幅度平方给出粒子到达B的正确概率。

最新网址:m.feiwen5.com